Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2027
-
ABSTRACT Desert kangaroo rats (Dipodomys deserti) construct burrows that can create micro-niches favorable to increased microbial activity. The aim of this study was to characterize the bacterial communities found in kangaroo rat burrows, in proximal desert surface sand, and in samples from kangaroo rats. We collected samples from burrow ceilings of actively inhabited burrows, from burrows that were no longer in use, and from the proximal surface sand in the Sonoran Desert, Yuma, AZ. Following DNA extraction from samples, 16S rRNA gene sequencing was performed, and functional predictions were made and assessed for each characterized bacterial community. Active burrow samples exhibited greater alpha diversity but similar beta diversity when compared to surface sand (P< 0.05), with no significant differences observed between abandoned and active burrows. Bacterial genera and genes related to nitrogen fixation, nitrification, and urea hydrolysis were found in significantly higher abundance in active burrows compared to the surface sand (P< 0.05). The core microbiome of active burrow samples was different from surface sand, including higher abundances ofAcidimicrobialesandAcidobacteriasubdivision Gp7. Active burrow samples included 30 unique genera. Kangaroo rat anal swabs shared 12, cheek pouches shared 6 unique genera with burrows. These findings suggest that kangaroo rats can shape the microbial composition of their burrow environment through the introduction of food material and waste, facilitating increased species richness and bacterial diversity.IMPORTANCEAnimals can alter soil parameters, including microbial composition through burrowing activities, excretion, and dietary composition. Desert kangaroo rats (Dipodomys deserti) construct burrows within loose desert sand that have microclimatic conditions different from the surrounding desert climate. In this study, we explored the effect of disturbance from kangaroo rat activities on the bacterial composition of sand. We compared the bacterial community compositions of kangaroo rat (D. deserti) samples, their burrows, and the proximal surface sand. The results showed that burrow sand shows higher richness and diversity of bacterial community with higher abundances of bacterial genera and genes associated with nitrogen fixation, nitrification, and urea hydrolysis compared to the surface sand. These findings suggest that kangaroo rats affect the microbial composition of their burrow environment through the introduction of food material and waste.more » « lessFree, publicly-accessible full text available May 6, 2026
-
Kangaroo rats (Dipodomys deserti) construct complex burrow systems in loose desert sand that survive temperature and relative humidity fluctuations and storms. Animals that burrow in desert sand typically burrow in compacted sand, near plant roots, or when the soil is unsaturated. However, these processes are insufficient to explain tunnel stability of kangaroo rats. Our goal is to understand how kangaroo rat burrows remain stable in loose desert sand, intending to translate this knowledge to geotechnical engineering. A kangaroo rat habitat in the dunes of The Sonoran Desert, AZ, was selected for the study. Dynamic cone penetrometer tests performed at active, abandoned, and no-burrow sites demonstrated that the animals prefer loose sand for burrow construction. Soil samples collected from the burrows' ceilings, subsurface, and surface were characterized. Brazilian tensile strength test results showed that burrow soil has approximately 3 times greater tensile strength than the rest at dry state, which indicates increased interparticle attractive stress in burrow ceilings due to biocementation. Laboratory experiments, scanning electron microscopy, and confocal microscopy images showed that fungal and microbial biofilms provided 17 kPa increase in interparticle attractive stress at less than 1% biomass concentration, indicating potential to be used in soil improvement applications.more » « less
-
When exposed to an ascending flow, pendant drops oscillate at magnitudes determined by windspeed, drop diameter, and needle diameter. In this study, we investigate the retention stability and oscillations of pendant drops in a vertical wind tunnel. Oscillation is captured by a high-speed camera for a drop Reynolds number Re = 200–3000. Drops at Re ≲ 1000 oscillate up to 12 times the frequency of drops with high Re. Increasing windspeed enables larger volume drops to remain attached to the needles above Re = 500. We categorize drop dynamics into seven behavioral modes according to the plane of rotation and deformation of shape. Video frame aggregation permits the determination of a static, characteristic shape of our highly dynamic drops. Such a shape provides a hydraulic diameter and the evaluation of the volume swept by the oscillating drops with time. The maximum swept volume per unit drop volume occurs at Re = 600, corresponding to the peak in angular velocity.more » « less
-
David Weitz (Ed.)Water striders are abundant in areas with high humidity and rainfall. Raindrops can weigh more than 40 times the adult water strider and some pelagic species spend their entire lives at sea, never contacting ground. Until now, researchers have not systematically investigated the survival of water striders when impacted by raindrops. In this experimental study, we use high-speed videography to film drop impacts on water striders. Drops force the insects subsurface upon direct contact. As the ensuing crater rebounds upward, the water strider is propelled airborne by a Worthington jet, herein called the first jet. We show the water strider’s locomotive responses, low density, resistance to wetting when briefly submerged, and ability to regain a super-surface rest state, rendering it impervious to the initial impact. When pulled subsurface during a second crater formation caused by the collapsing first jet, water striders face the possibility of ejection above the surface or submersion below the surface, a fate determined by their position in the second crater. We identify a critical crater collapse acceleration threshold ∼ 5.7 gravities for the collapsing second crater which determines the ejection and submersion of passive water striders. Entrapment by submersion makes the water strider poised to penetrate the air–water interface from below, which appears impossible without the aid of a plastron and proper locomotive techniques. Our study is likely the first to consider second crater dynamics and our results translate to the submersion dynamics of other passively floating particles such as millimetric microplastics atop the world’s oceans.more » « less
An official website of the United States government
